2012-03-13

The Startram Project

Maglev track could launch spacecraft into orbit

(PhysOrg.com) -- With the aim to make it easier to launch spacecraft into low Earth orbit (LEO), two researchers have turned to maglev technology to catapult a payload hundreds of miles above the Earth. While the concept may sound far-fetched, the researchers argue that the potential benefits to humanity far outweigh the costs.



StarTram - Wikipedia, the free encyclopedia



StarTram is a proposal for a maglev space launch system. The initial Generation 1 facility would be cargo only, launching from a mountain peak at 3 km to 7 km altitude with an evacuated tube staying at local surface level; it has been claimed that 150,000 tons could be lifted to orbit annually. More advanced technology would be required for the Generation 2 system for passengers, with a longer track instead gradually curving up at its end to the thinner air at 22 km altitude, supported by magnetic levitation, reducing g-forces when each capsule transitions from the vacuum tube to the atmosphere. A SPESIF 2010 presentation stated that Gen-1 could be completed by the year 2020+ if funding began presently, Gen-2 by 2030+.[1]

Startram Technology - Startram


Maglev for Acceleration of Launch Vehicles



Magnetically Suspended Superconducting Cables



Magneto Hydrodynamic (MHD) Pumps



High-strength Structural Tethers


Startram - maglev train to low earth orbit

Sandia National Laboratories has carried out a '"murder-squad" investigation of the Startram concept, whose purpose is to find any flaw in a proposed project. They gave Startram a clean bill of health. Estimates suggest that building a passenger-capable Startram would require 20 years and a construction budget (ignoring inflation and overoptimism) of about $60 billion.

Why take on such an enormous project? Simple - $50 per kilogram amortized launch costs. The total worldwide cost of developing and using rocket-based space travel is more than $500 billion. The Space Shuttle program cost about $170 billion. The International Space Station has cost about $150 billion to date. As yet, we are making very little commercial use of near-Earth space beyond deployment of communication and imaging satellites. Reducing the LEO insertion costs a hundredfold should finally start our commercial exploitation of the special resources of space. Not to mention making orbital hotels a travel goal for middle-class tourists!